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Abstract
We present a method for Baxterizing solutions of the constant Yang–Baxter
equation associated with Z-graded Hopf algebras. To demonstrate the
approach, we provide examples for the Taft algebras and the quantum group
Uq[sl(2)].

PACS numbers: 02.30.Ik, 02.20.Uw

1. Introduction

The word ‘Baxterization’ was originally coined by Jones [1, 2] to refer to the insertion of a
parameter into a solution of the constant Yang–Baxter equation so that it becomes a solution of
the parameter dependent Yang–Baxter equation. This is done in such a way that the resultant
parametric solution reduces to the original constant one in some suitable limit.

There exist well-studied methods of Baxterization, especially those associated with
quantum groups. Both universal (i.e. representation independent) [2–5] and representation
dependent [1, 2, 6–13] approaches have been developed.

In this paper, we introduce a new method of Baxterizing universal R-matrices arising from
Z-graded associative algebras. In particular we focus on Z-graded Hopf algebras. The prime
examples with which we demonstrate our results are the Taft algebras [14, 15].

The (multiplicative) parameter dependent Yang–Baxter equation (YBE) is

R12(x)R13(xy)R23(y) = R23(y)R13(xy)R12(x).

Here R, known as an R-matrix, is an operator on V ⊗ V for some vector space V . We use
the standard notation that R13 ∈ End (V ⊗ V ⊗ V ) represents R operating on the 1st and
3rd components of V ⊗ V ⊗ V , and similarly for R12, R23. This equation has a variety of
applications, particularly in exactly solvable models in statistical mechanics [16] and quantum
field theory [17]. Consequently, it is always of interest to develop new methods of solving
this equation. Certainly, there already exists a body of elegant works dedicated to solving this
equation, some noteworthy articles being [6, 18, 19]. For a good overview of the parameter
dependent Yang–Baxter equation and its solutions (see, for example, [20] or [21]).
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By contrast, the constant Yang–Baxter equation

R12R13R23 = R23R13R12

has no parameter dependence and hence is easier to solve. Solutions are known in many
different contexts, most significantly Drinfeld’s universal solution arising from the quantum
double construction for Hopf algebras [18]. From a solution of the parameter dependent YBE,
one can easily obtain a solution of the constant YBE (by taking some suitable limit), but the
converse is not true. As mentioned above, there are well-established Baxterization techniques
for quantum groups, however these methods do not extend to Hopf algebras in general.

In this paper, we present a straightforward method of obtaining a universal parameter
dependent solution from a constant solution in the context of Z-graded Hopf algebras. To
demonstrate the method, we provide specific examples for the finite-dimensional Taft algebras
and the quantum group Uq [sl(2)].

2. Universal Baxterization

Definition 2.1. Let H be an associative algebra with unit with multiplication m. Let A be a
subalgebra of H. If we can find {Ap|p ∈ Z} such that

(i) A = ⊕
p Ap

and
(ii) m : Ap ⊗ Aq → Ap+q,

then we say A is Z-graded, and call A = ⊕
p Ap the Z-grading of A. If there exists some

p �= 0 such that Ap �= {0} we say the Z-grading is nontrivial.

Proposition 2.1. Let H be an associative algebra with unit. Suppose H has subalgebras A,B

with Z-gradings A = ⊕
p Ap and B = ⊕

q Bq , respectively. If H contains a solution of the
constant Yang–Baxter equation of the form

R =
∑
i,α

ai
α ⊗ bi

α,

where ai
α ∈ Ai and bi

α ∈ Bi , then

R(µ) =
∑

i

µi
∑

α

ai
α ⊗ bi

α

is a solution of the multiplicative parametric Yang–Baxter equation.

Proof. It is given that R = ∑
i,α ai

α ⊗ bi
α satisfies the constant Yang–Baxter equation

R12R13R23 = R23R13R12.

Substituting in, this is equivalent to stating∑
i,j,k,α,β,γ

ai
αa

j

β ⊗ bi
αak

γ ⊗ b
j

βbk
γ =

∑
p,q,r,δ,ε,κ

aq
ε ar

κ ⊗ a
p

δ br
κ ⊗ b

p

δ bq
ε .

In particular, we can equate the entries belonging to As ⊗ H ⊗ Bq , giving∑
j,α,β,γ

as−j
α a

j

β ⊗ bs−j
α at−j

γ ⊗ b
j

βbt−j
γ =

∑
q,δ,ε,κ

aq
ε as−q

κ ⊗ a
t−q

δ bs−q
κ ⊗ b

t−q

δ bq
ε .
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Now we substitute the parametrized R-matrix R(µ) into the parametric Yang–Baxter equation

R12(µ)R13(µν)R23(ν) =
∑

i,j,k,α,β,γ

µi+j νj+kai
αa

j

β ⊗ bi
αak

γ ⊗ b
j

βbk
γ

=
∑
s,t

µsνt
∑
j,αβγ

as−j
α a

j

β ⊗ bs−j
α at−j

γ ⊗ b
j

βbt−j
γ

=
∑
s,t

µsνt
∑

q,δ,ε,κ

aq
ε as−q

κ ⊗ a
t−q

δ bs−q
κ ⊗ b

t−q

δ bq
ε

=
∑

p,q,r,δ,ε,κ

µq+rνp+qaq
ε ar

κ ⊗ a
p

δ br
κ ⊗ b

p

δ bq
ε

= R23(ν)R13(µν)R12(µ)

as required. �

It is possible to generalize the result of proposition 2.1 to include Z
n-graded algebras.

The result is that if R is an element of
⊕

p∈Zn Ap ⊗ Bp, then a universal Baxterization exists.
Explicitly, let

R =
∑

i∈Z,p∈Zn

a
p

i ⊗ b
p

i ,

where a
p

i ∈ Ap, b
p

i ∈ Bp. The Baxterized solution will then be

R(µ) =
∑
p∈Zn

µτ(p)
∑
i∈Z

a
p

i ⊗ b
p

i ,

where τ : Z
n → Z (or some other appropriate codomain) is a group homomorphism under

addition. The proof of this result is essentially the same as the proof of proposition 2.1. We
will not, however, make use of this generalization in the current communication.

One algebraic structure where a nontrivial Z-grading may arise is the Drinfeld double of
a Hopf algebra. To understand the Drinfeld double, we first introduce the dual of a finite Hopf
algebra H, which we denote H ∗.

The vector space underlying H ∗ is the set of linear maps f : H → C. We choose the
bilinear form

〈f, x〉 = f (x), ∀ x ∈ H.

If H has basis {ai}, then we choose {a∗
i } as a basis for H ∗, where

〈a∗
i , aj 〉 = δij .

The structure of H ∗ is induced by that of H. Specifically, if H has multiplication m, unit u,
coproduct 	 and counit ε then H ∗ becomes a Hopf algebra with multiplication m∗, unit u∗,
coproduct 	∗ and counit ε∗ defined by

〈m∗(a∗
i ⊗ a∗

j ), ak〉 = 〈a∗
i ⊗ a∗

j ,	(ak)〉, 〈u∗(k), ai〉 = kε(ai), ∀ k ∈ C,

〈	∗(a∗
i ), aj ⊗ ak〉 = 〈a∗

i , m(aj ⊗ ak)〉, ε∗(a∗
i ) = 〈a∗

i , e〉.
The Drinfeld double of a finite Hopf algebra H, which we denote D(H), is a quasitriangular

Hopf algebra spanned by elements of the form {gh∗|g ∈ H,h∗ ∈ H ∗}. Details of the algebraic
structure and costructure of D(H) can be found in [18]. Of particular relevance here is the
property that D(H) contains a canonical solution of the Yang–Baxter equation of the form

R =
∑

i

ai ⊗ a∗
i ,
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where {ai} is a basis for H. Here, we identify ai with aiε and (ai)
∗ with u(ai)

∗ where ε and u
are the counit and unit of H, respectively.

Using this universal R-matrix, we have the following result:

Proposition 2.2. Let H be a finite-dimensional Z-graded Hopf algebra with nontrivial
Z-grading H = ⊕

p Ap. If the coproduct of H satisfies

	 : Ap →
⊕

q

Aq ⊗ Ap−q, ∀ p ∈ Z,

then D(H) nontrivially satisfies the conditions for proposition 2.1.

Proof. Let Ap have the basis
{
a

p

i

}
and Bp have the basis

{(
a

p

i

)∗ ∣∣ ap

i ∈ Ap
}
. Clearly the dual

of H can be written as H ∗ = ⊕
p Bp. Moreover an R-matrix for D(H) is

∑
j aj ⊗ (aj )

∗ ∈⊕
p Ap ⊗ Bp. Thus it remains only to show m : Bp ⊗ Bq → Bp+q where m represents

multiplication within D(H).
But 〈

m
((

a
p

i

)∗ ⊗ (
a

q

j

)∗)
, ar

k

〉 = 〈(
a

p

i

)∗ ⊗ (
a

q

j

)∗
,	

(
ar

k

)〉 = 0 if r �= p + q.

Thus m : Bp ⊗ Bq → Bp+q for all p, q ∈ Z. Hence D(H) satisfies the conditions for
proposition 2.1. �

3. Example: Uq[sl(2)]

The q-deformed Lie algebra Uq[sl(2)] has generators e, f, h satisfying

[e, f ] = qh − q−h

q − q−1
, [h, e] = 2e, [h, f ] = −2f,

where q is the deformation parameter. Define [n]q and [n]q! as follows:

[n]q = qn − q−n

q − q−1
, [n]q! = [n]q[n − 1]q · · · [1]q .

Then Uq[sl(2)] contains the following universal R-matrix [22]:

R =
∞∑

n=0

q
1
2 n(n+1)(1 − q−2)n

[n]q!
q

1
2 (h⊗h)en ⊗ f n.

Now set H = 〈h〉 to be the subalgebra generated by h,A = 〈h, e〉 to be the subalgebra
generated by e and h, and B = 〈h, f 〉 to be the subalgebra generated by f and h. Then A has
the natural Z-grading A = ⊕

k∈N
Ak where Ak = Hek, k � 0. Similarly, B has the Z-grading

B = ⊕
k∈N

Bk where Bk = Hf k, k � 0. Note that with these Z-gradings R ∈ ⊕
k∈N

Ak ⊗Bk ,
so we can apply proposition 2.1. We find that

R(µ) =
∞∑

n=0

µn q
1
2 n(n+1)(1 − q−2)n

[n]q!
q

1
2 (h⊗h)en ⊗ f n

is a solution of the mulitplicative parametric Yang–Baxter equation.
Applying the spin- 1

2 representation, which is given by

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
,
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this becomes

R(µ) =

⎛
⎜⎜⎜⎝

q
1
2 0 0 0

0 q− 1
2 µq− 1

2 (q − q−1) 0

0 0 q− 1
2 0

0 0 0 q
1
2

⎞
⎟⎟⎟⎠ .

Similarly, applying the spin-1 representation, which is given by

e =
√

q + q−1

⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠ , f =

√
q + q−1

⎛
⎝0 0 0

1 0 0
0 1 0

⎞
⎠ , h =

⎛
⎝2 0 0

0 0 0
0 0 −2

⎞
⎠ ,

the parametric R-matrix becomes

R(µ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q2 0 0 0 0 0 0 0 0

0 1 0 µ(q2 − q−2) 0 0 0 0 0

0 0 q−2 0 µq−2(q2 − q−2) 0 µ2q−1(q − q−1)2(q + q−1) 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 µ(q2 − q−2) 0 0

0 0 0 0 0 1 0 µ(q2 − q−2) 0

0 0 0 0 0 0 q−2 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 q2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

4. Example: Taft algebras

The Taft algebra TN,q [14] over a field F is an N2-dimensional algebra with unit e generated
by 〈a, x|aN = e, xN = 0, xa = qax〉. Here q is a primitive N th root of unity in F. We choose
{aixj |0 � i, j < n} as a basis for TN,q , and note that multiplication of two basis elements is
given by (aixj )(akxl) = qjkai+kxl+j .

The Taft algebra TN,q becomes a Hopf algebra when endowed with a costructure and
antipode defined on the generators a, x by

	(a) = a ⊗ a, ε(a) = 1, γ (a) = a−1,

	(x) = x ⊗ e + a ⊗ x, ε(x) = 0, γ (x) = −a−1x.

Here 	, ε and γ represent the coproduct, counit and antipode, respectively.
The coproduct and counit extend as homomorphisms to all of TN,q . Following the notation

of [15], we define (n)q = 1 + q + · · · + qn−1 and (n)q! = (n)q(n − 1)q · · · (1)1. Set(
n

m

)
q

= (n)q!

(m)q!(n − m)q!
.

Then for all elements aixj ∈ TN,q , we find the coproduct is given by

	(aixj ) =
j∑

k=0

(
j

k

)
q

aj−k+ixk ⊗ aixj−k.

The Drinfeld double D(Tn,q) contains a universal R-matrix given by

R =
N−1∑
i,j=0

aixj ⊗ (aixj )∗.
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But TN,q has the Z-grading TN,q = ⊕
p Ap where Ap has basis {aixp|0 � i < N}. Under

this grading, the coproduct satisfies

	 : Ap →
⊕

q

Aq ⊗ Ap−q ∀ p ∈ Z.

Thus we note from propositions 2.1 and 2.2 that the Drinfeld double D(TN,q) contains an
algebraic solution of the parametric Yang–Baxter equation given by

R(µ) =
N−1∑
i,j=0

µjaixj ⊗ (aixj )∗.

This can in turn give rise to several matrix solutions of the parametric Yang–Baxter
equation, as the representation theory of the Taft algebras has been developed by Chen [15].
Explicitly, the N2 irreducible representations of TN,q are given by

πn,l(a
ixj ) =

n−j∑
k=1

q(k−l−n)i (k + j − 1)q!

(k − 1)q!
�

j−1
p=0(1 − qp+k−n)ek,k+j

and

πn,l((a
i+l−1xj )∗) =

⎧⎨
⎩

ei+j,i

(j)q!
, 1 � i � n − j mod(N),

0 otherwise,

where 1 � n, l � N. Here ei,j is the n×n-dimensional elementary matrix whose only nonzero
entry is a 1 in the (i, j) position.

There are also N-dimensional indecomposable representations of TN,q , which can be
found in [15]. They are given by

πα(aixj ) = αq−i(j+l) (N − 2)q!

(N − j − 1)q!

j−1∏
p=1

(1 − q−p)eN+1−j,1

+
N−j∑
k=2

qi(k−1−l) (k + j − 1)q!

(k − 2)q!

j−1∏
p=0

(1 − qk+p)ek,k+j

and, as before,

πα((ai+l−1xj )∗) =
⎧⎨
⎩

ei+j,i

(j)q!
, 1 � i � n − j mod(N),

0 otherwise.

When the representation [15] arising from Ṽ3,l ⊗ Ṽ3,l is applied to the universal R-matrix
of D(TN,q), N � 3, it gives the Baxterized R-matrix

R(µ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

0 q−l−2 0 (1 − q−2)µ 0 0 0 0 0

0 0 q−2(l+2) 0 q−l−4(q2 − 1)µ 0 (1 − q−1)(1 − q−2)µ2 0 0

0 0 0 ql 0 0 0 0 0

0 0 0 0 q−1 0 ql+1(1 − q−2)µ 0 0

0 0 0 0 0 q−l−2 0 (1 − q−2)µ 0

0 0 0 0 0 0 q2l 0 0

0 0 0 0 0 0 0 ql 0

0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is worth noting that for l = N −1, this matrix is a special case of the 9×9 matrix associated
with Uq[sl(2)] given earlier.
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Although the examples we have given are all upper triangular, this is not true in general.
For a resultant matrix which is not triangular, we require a Z-grading which is not an N-grading.
For example, the quantum double of Uq[sl(2)] contains such a grading.
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